
Programming the Forwarding Plane

Nick	McKeown	
Stanford	University 		

PISA:	Protocol	Independent	Switch	Architecture	
[Sigcomm	2013]	

2	

	P
ro
gr
am

m
ab
le
	

Pa
rs
er
	

Memory	

Match+AcHon	

ALU	

PISA:	Protocol	Independent	Switch	Architecture	

3	

	P
ro
gr
am

m
ab
le
	

Pa
rs
er
	

Match+AcHon	

P4	and	PISA	

P4	code	

Compiler	Target	

Compiler	

	P
ro
gr
am

m
ab
le
	

Pa
rs
er
	

P

4

:

P

r

o

g

r

a

m

m

i

n

g

P

r

o

t

o

c

o

l

-

I

n

d

e

p

e

n

d

e

n

t

P

a

c

k

e

t

P

r

o

c

e

s

s

o

r

s

P

a

t

B

o

s

s

h

a

r

t

†

,

D

a

n

D

a

l

y

*
,

G

l

e

n

G

i

b

b

†

,

M

a

r

t

i

n

I

z

z

a

r

d

†

,

N

i

c

k

M

c

K

e

o

w

n

‡

,

J

e

n

n

i

f

e

r

R

e

x

f

o

r

d

**
,

C

o

l

e

S

c

h

l

e

s

i

n

g

e

r

**
,

D

a

n

T

a

l

a

y

c

o

†

,

A

m

i

n

V

a

h

d

a

t

¶

,

G

e

o

r

g

e

V

a

r

g

h

e

s

e

§

,

D

a

v

i

d

W

a

l

k

e

r

**

†

B

a

r

e

f

o

o

t

N

e

t

w

o

r

k

s *
I

n

t

e

l

‡

S

t

a

n

f

o

r

d

U

n

i

v

e

r

s

i

t

y **
P

r

i

n

c

e

t

o

n

U

n

i

v

e

r

s

i

t

y ¶

G

o

o

g

l

e §

M

i

c

r

o

s

o

f

t

R

e

s

e

a

r

c

h

ABSTRACTP4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version
Date

Header Fields

OF 1.0
Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1
Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2
Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3
Jun 2012 40 fields

OF 1.4
Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-

plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review
88

Volume 44, Number 3, July 2014

ACM Sigcomm Computer Communications Review July 2014

George	
Varghese	

Amin		
Vahdat	

Jen	
Rexford	

Dan	
Daly	 Pat	

Bosshart	

Glen	
Gibb	

MarHn	
Izzard	

Dave	
Walker	

Cole	
Schlesinger	

Dan	
Talayco	

Nick	
McKeown	

[ACM	CCR	2014]	
“Best	Paper	2014”	

Update	on	P4	Language	Ecosystem	

P4.org	–	P4	Language	ConsorHum	

P4.org	–	P4	Language	ConsorHum	

Maintains	the	P4	language	spec	Github	for	open-source	tools	
	

•  Reference	P4	programs	
•  Compiler	
•  P4	so[ware	switch	
•  Test	framework	
•  Apache	license	

•  Regular	P4	meeHngs	
•  Full-day	tutorial	at	Sigcomm	2015	
•  2nd	P4	Workshop	at	Stanford	on	November	18		
•  1st	P4	Boot	camp	for	PhD	students	November	19-20	
•  1st	P4	Developers	Day	November	19		

Open	for	free	to	any	individual	or	
organizaHon	

Systems	

P4	Consor8um	–	P4.org	

Academia	

Targets	

Operators	

Mapping	P4	programs	to	compiler	target	
Lavanya	Jose,	Lisa	Yan,	George	Varghese,	NM	

[NSDI	2015]	

Naïve	Mapping:	Control	Flow	Graph	

M
at
ch
	T
ab
le
	

M
at
ch
	T
ab
le
	

M
at
ch
	T
ab
le
	

M
at
ch
	T
ab
le
	

Ac
Ho

n	
M
ac
ro
	

Ac
Ho

n	
M
ac
ro
	

Ac
Ho

n	
M
ac
ro
	

Ac
Ho

n	
M
ac
ro
	

L2	
v4	

v6	
ACL	

Control	Flow	

Switch	Pipeline	

L2
	T
ab
le
	

IP
v4
	T
ab
le
	

IP
v6
	T
ab
le
	 AC
L	

Ta
bl
e	

L2	
v6	

ACL	
v4	

Ac
Ho

n	

v4
	A
cH
on

	M
ac
ro
	

v6
	A
cH
on

	M
ac
ro
	

Ac
Ho

n	

11	

Queues	

Pr
og
ra
m
m
ab
le
	

Pa
rs
er
	

Control	Flow	Graph	

L2	

Table	Dependency	Graph	(TDG)	

v4	

v6	
ACL	

L2	
v4	

v6	

ACL	

Table	Dependency	Graph	

12	

Switch	Pipeline	

Efficient	Mapping:	TDG	

L2
	T
ab
le
	

IP
v4
	T
ab
le
	

IP
v6
	T
ab
le
	

Table	Dependency	Graph	Control	Flow	Graph	

L2	
v4	

v6	
ACL	L2	

v4	

v6	

ACL	

Ac
Ho

n	

v4
	A
cH
on

	M
ac
ro
	

v6
	A
cH
on

	M
ac
ro
	

13	

AC
L	

Ta
bl
e	

Ac
Ho

n	

Queues	

Pr
og
ra
m
m
ab
le
	

Pa
rs
er
	

Example	Use	Case:	Typical	TDG	

14	

IPv6-Mcast	

EG-ACL1	
EG-Phy-
Meta	

IG-Agg-Inj	
IG-Dmac	

IPv4-Mcast	

IPv4-
Nexthop	

IPv6-
Nexthop	

IG-Props	

IG-Router-
Mac	

Ipv4-Ecmp	

IG-Smac	

Ipv4-Ucast-
LPM	

Ipv4-Ucast-
Host	

Ipv6-Ucast-
Host	

Ipv6-Ucast-
LPM	

Ipv6-Ecmp	

IG_ACL2	

IG_Bcast_St
orm	

Ipv4_Urpf	

Ipv6_Urpf	

IG_ACL1	

EG_Props	IG_Phy_Meta	

ConfiguraHon	for	16-stage	PISA	

Exact	

TCAM	

Mapping	Techniques	
[NSDI	2015]	

Compare:	Greedy	Algorithm	versus	Integer	Linear	Programming	(ILP)	
	

Greedy	Algorithm	runs	100-Hmes	faster	
ILP	Algorithm	uses	30%	fewer	stages	
	

RecommendaHons:	
1.  If	enough	Hme,	use	ILP	
2.  Else,	run	ILP	offline	to	find	best	parameters	for	Greedy	algorithm	

P4	code,	switch	models	and	compilers	available	at:	hqp://github.com/p4lang		

PISCES:	Protocol	Independent	So[ware	Hypervisor	Switch	
Mohammad	Shahbaz*,	Sean	Choi,	Jen	Rexford*,	Nick	Feamster*,	Ben	Pfaff,	NM	

Problem:	Adding	new	protocol	feature	to	OVS	is	complicated	
•  Requires	domain	experHze	in	kernel	programming	and	networking	
•  Many	modules	affected	
•  Long	QA	and	deployment	cycle:	typically	9	months	

Approach:	Specify	forwarding	behavior	in	P4;	compile	to	modify	OVS	
	

QuesHon:	How	does	the	PISCES	switch	performance	compare	to	OVS?	

PISCES	Architecture	

Parse ActionMatch

OVS Source Code

Flow Rule
Type Checker

OVS Executable

Runtime Flow RulesP4 Program

P4 Compiler

C Code

Slow Path
Configuration

Match-Action
Rules

NaHve	OVS	expressed	in	P4	

VLAN	Ingress	
Processing	

Match:	ingress_port	
							vlan.vid	
Action:	add_vlan	
								no_op	

MAC	
Learning	

Match:	eth.src	
Action:	learn	
								no_op	

Switching	

Match:	eth.dst	
							vlan.vid	
Action:	forward	
								bcast	

Routing	

Match:	ip.dst	
Action:	nexthop	
								drop	

Routable	

Match:	eth.src	
							eth.dst	
							vlan.vid	
Action:	no_op	

ACL	

Match:	ip.src,ip.dst	
							ip.prtcl,	
							port.src,port.dst	
Action:	no_op	
								drop	

VLAN	Egress	
Processing	

Match:	egress_port	
							vlan.vid	
Action:	remove_vlan	
								no_op	

route	

PISCES	vs	NaHve	OVS	

0

10

20

30

40

50

64 128 192 256

T
hr

ou
gh

pu
t (

G
bp

s)

Packet Size (Bytes)

PISCES PISCES (Optimized) OVS

Complexity	Comparison	

40x	reducHon	in	LOC	
20x	reducHon	in	method	size	

Code	mastery	no	longer	needed	

Next	Steps	

1.  Make	PISCES	available	as	open-source	(May	2016)	
2.  Accumulate	experience,	measure	reducHon	in	deployment	Hme	
3.  Develop	P4-to-eBPF	compiler	for	kernel	forwarding	

PERC:	ProacHve	Explicit	Rate	Control	
Lavanya	Jose,	Stephen	Ibanez,	Mohammad	Alizadeh,	George	Varghese,	Sachin	Kaw,	NM	

Problem:	CongesHon	control	algorithms	in	DCs	are	“reacHve”	
•  Typically	takes	100	RTTs	to	converge	to	fair-share	rates	(e.g.	TCP,	RCP,	DCTCP)	
•  The	algorithm	it	doesn’t	know	the	answer;	it	uses	successive	approximaHon	
	

Approach:	Explicitly	calculate	the	fair-share	rates	in	the	forwarding	plane	
	

QuesHon:	Does	it	converge	much	faster?	Is	it	pracHcal?	

[Hotnets	2015]	

ReacHve	vs	ProacHve	Algorithms	

Performance	Results	

Convergence	Hme		
determined	by		
dependency	chain	

Next	Steps	

Convergence	Hme	
•  Proof	that	convergence	Hme	equals	length	of	dependency	chain	
•  Reduce	measured	Hme	to	provable	minimum	

Develop	pracHcal	algorithm	
•  Resilient	to	imperfect	and	lost	update	informaHon	
•  Calculated	in	PISA-style	forwarding	plane	

25	

<The	End>	

26	

