Programming the Forwarding Plane

Nick McKeown

PISA: Protocol Independent Switch Architecture
[Sigcomm 2013]

Match+Action

<
0
©
=
&8
© @©
o
O
| -
o

i
0
©
&
&
©
| -
o]0]
O
| -
o

PISA: Protocol Independent Switch Architecture

Match+Action

Parser

P4 and PISA

Compiler

Compiler Target

g
o
©
€ g
£
© (@
| -
s
o
| -
o

[ACM CCR 2014]
“Best Paper 2014”

Amin Jen | N Martin Dave
on 0 N Unjyer Y/ :
Vahdat Rexford " ackey o 1 Y 160 S8 Dayy lzzard Walker
T, : 5 Tan gle ; Wak

"

George
Varghese

g hy

C {e
rdyy.
t0 cy Wa,

€.

S thy, o Cont
”“'01,101

- 'S4 4

Oow 2.0°

Dan
Daly Pat
Bosshart

Nick
Dan McKeown
Talayco

Cole
Schlesinger

“tand, rd

Update on P4 Language Ecosystem

P4.org — P4 Language Consortium

PiPa

<« (& p4.org

2" Apps [Work ¥ Bookmarks

4 SPEC CODE NEWS JOINUS BLOG

BOARD MEMBERS

Two Board members oversee the consortium:

Nick McKeown ; \ Jennifer Rexford

Stanford University ' I\ ‘ Princeton University

E - control ingress {
Field Reconfigurable apply (iouting) /

P4 allows network engineers to change the way their }
switches process packets after they are deployed.

P4.org — P4 Language Consortium

SPEC CODE | NEWS JOIN US BLOG

Regular P4 meetings
Full-day tutorial at Si
2"d P4 Workshop at S
15t P4 Boot camp for
15t P4 Developers Day November 19

Open for free to any individual or
organization

- - control ingress {
Field Reconfigurable apply (?:outing) /

P4 allows network engineers to change the way their }
switches process packets after they are deployed.

@3 P4 consortium - P4.org 4

-

90
Operators &/ g atat Baid®EE (Comcast =" Microsoft SK

—
systems BROCADE® ‘Il K comsa HewittPacard N2 juniper
nterprise HUAWEI

|

A —N .
e . Stosgic BAREFCO:T BROADCOM.
Targets AEPZNYX REies NETWORKS T Zcanum () centec EZcue

(' £ \ | 3 & € XILINX
intel Mellanox wrfie @ PLUMgrid

> freescale

°
Academia {5\ POLITECNICO PRINCETON @3 Stanford “ Il I . I II
2505 MILANO 1863 INIVERSITY |/ </ A i (
> - ¢ =7 University UNIVERSITE DU
: LUXEMBOURG

Mapping P4 programs to compiler target

Lavanya Jose, Lisa Yan, George Varghese, NM

[NSDI 2015]

Control Flow Graph

Naive Mapping

Control Flow

Switch Pipeline

Queues

UoLJY \uonay

9|qel
dle
1V PEN

0J2BJA] UOLIDY 9A /

9|qel 9AdI

0J2B|A] UONIY PA

9|qel vAdI

uondy | uondy

o|qeL 1 {d21eiN

Jasied

9|gewwesdoid

11

Table Dependency Graph (TDG)

Control Flow Graph

Table Dependency Graph

12

Ing: TDG

Icient Mappil

E

Queues

0J2B|A] UOLDY 9A

9|qeLl 9AdI

0J2EB|A] UOLDY PA

o|qel PAd|

9|qeLl (1

J9sJed
9|gewwesdoid

Control FlowcGraph

Switch Pipeline

13

Example Use Case: Typical TDG

lpv4_Urpf

3 Ipv4-Ucast- Ipv4-Ucast-
IG-Router- Host LPM
Mac

IPv4-Mcast L2

IG Phy Meta
Phy X IG_Bcast_St
IG-Props lpv6e_Urpf orm

[pvb-Ucast-
LPM

Ipv6-Ucast-
¥ Host

IPv6-Mcast

Configuration for 16-stage PISA

- HERRE Bm~-
S T | e

| Ipv4-Ecmp

[

=

IG_ACL1

—

IPv6-

—————— Nexthop ‘
IG-Dmac
Ipv6-Ecmp

EG_Props

IG-Agg-Intf

EG-Phy-

Meta

IG_ACL2

im

EG-ACL1

14

Mapping Techniques
[NSDI 2015]

Compare: Greedy Algorithm versus Integer Linear Programming (ILP)

Greedy Algorithm runs 100-times faster
ILP Algorithm uses 30% fewer stages

Recommendations:
1. If enough time, use ILP

2. Else, run ILP offline to find best parameters for Greedy algorithm

P4 code, switch models and compilers available at: http://github.com/p4lang

PISCES: Protocol Independent Software Hypervisor Switch
Mohammad Shahbaz*, Sean Choi, Jen Rexford®*, Nick Feamster™*, Ben Pfaff, NM

Problem: Adding new protocol feature to OVS is complicated

* Requires domain expertize in kernel programming and networking

* Many modules affected
* Long QA and deployment cycle: typically 9 months

Approach: Specify forwarding behavior in P4; compile to modify OVS

Question: How does the PISCES switch performance compare to OVS?

PISCES Architecture

P4 Program Runtime Flow Rules

l

P4 Compiler Flow Rule
Type Checker

Match-Action
Rules

Slow Path
Configuration

OVS Source Code OVS Executable

VLAN Ingress
Processing

Match: ingress port
vlan.vid
Action: add vlan

no_op

Native OVS expressed in P4

Routing

Match: ip.dst
Action: nexthop
drop

ACL

MAC Routable Switching

Learning Match: ip.src,ip.dst

Match: eth.dst ip.prtcl,

Xii;g;.eizéi;c eth.dst _ Vian-Vij port.src,port.dst
: vlan.vid Action: forwar Action: no_op

no_op Action: no_op bcast drop

Match: eth.src

VLAN Egress
Processing

Match: egress port
vlan.vid
Action: remove_vlan

no_op

PISCES vs Native OVS

OPISCES BPISCES (Optimized) BOVS

N
-

N
-

Y)
-

|\
S

~
»n
=
e
O
-’
~
=
=
=
=10
=
=
i
—
e

[
-

H

S

128 192
Packet Size (Bytes)

Complexity Comparison

_ LOC Methods Method Size .
Native OVS | 14,535 106 RZAERN 40x reductioninlOC
ovs.p4 341 40 353 20x reduction in method size

| FilesChanged | Lines Changed

: OVS 28 411
Connection Label ovs.pd) 5
P Code mastery no longer needed

OVS 18 170
funnel OAMIIE ovs.pa

OVS 20 370
TP Hags ovs.p4

Next Steps

1. Make PISCES available as open-source (May 2016)
2. Accumulate experience, measure reduction in deployment time
3. Develop P4-to-eBPF compiler for kernel forwarding

PERC: Proactive Explicit Rate Control

Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, George Varghese, Sachin Katti, NM

Problem: Congestion control algorithms in DCs are “reactive”
* Typically takes 100 RTTs to converge to fair-share rates (e.g. TCP, RCP, DCTCP)
 The algorithm it doesn’t know the answer; it uses successive approximation

Approach: Explicitly calculate the fair-share rates in the forwarding plane

Question: Does it converge much faster? Is it practical?

[Hotnets 2015]

Reactive vs Proactive Algorithms

I PERC (solid)

: \/~ RCP (dashed)
|deal (dotted)

IREEEEI EE EE X U - o

20 40 60 80 100

Flow 1 (start=0)
Flow 2 (start=600us

w
Q.
0
S
O]
e
©
o
-
e,
/)]
A2
=
0N
C
©
|_

0

Performance Results

100Gb/s
Edge Links

4 Hosts

Convergence time
m 14 RTTs 4RTTs | [preestabed
dependency chain
Tail (Q9") | 71RTTs | 10RTTs B

Next Steps

Convergence time

* Proof that convergence time equals length of dependency chain
 Reduce measured time to provable minimum

Develop practical algorithm

e Resilient to imperfect and lost update information
e (Calculated in PISA-style forwarding plane

25

<The End>

