Programming the Forwarding Plane

Nick McKeown



PISA: Protocol Independent Switch Architecture
[Sigcomm 2013]
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PISA: Protocol Independent Switch Architecture
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P4 and PISA

Compiler

Compiler Target
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[ACM CCR 2014]
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Update on P4 Language Ecosystem



P4.org — P4 Language Consortium
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P4.org — P4 Language Consortium
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Mapping P4 programs to compiler target

Lavanya Jose, Lisa Yan, George Varghese, NM

[NSDI 2015]



Control Flow Graph

Naive Mapping
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Table Dependency Graph (TDG)

Control Flow Graph

Table Dependency Graph
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Example Use Case: Typical TDG
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Mapping Techniques
[NSDI 2015]

Compare: Greedy Algorithm versus Integer Linear Programming (ILP)

Greedy Algorithm runs 100-times faster
ILP Algorithm uses 30% fewer stages

Recommendations:
1. If enough time, use ILP

2. Else, run ILP offline to find best parameters for Greedy algorithm

P4 code, switch models and compilers available at: http://github.com/p4lang



PISCES: Protocol Independent Software Hypervisor Switch
Mohammad Shahbaz*, Sean Choi, Jen Rexford®*, Nick Feamster™*, Ben Pfaff, NM

Problem: Adding new protocol feature to OVS is complicated

* Requires domain expertize in kernel programming and networking

* Many modules affected
* Long QA and deployment cycle: typically 9 months

Approach: Specify forwarding behavior in P4; compile to modify OVS

Question: How does the PISCES switch performance compare to OVS?




PISCES Architecture

P4 Program Runtime Flow Rules
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VLAN Ingress
Processing

Match: ingress port
vlan.vid
Action: add vlan

no_op

Native OVS expressed in P4

Routing

Match: ip.dst
Action: nexthop
drop

ACL

MAC Routable Switching

Learning Match: ip.src,ip.dst

Match: eth.dst ip.prtcl,

Xii;g;.eizéi;c eth.dst _ Vian-Vij port.src,port.dst
: vlan.vid Action: forwar Action: no_op

no_op Action: no_op bcast drop

Match: eth.src

VLAN Egress
Processing

Match: egress port
vlan.vid
Action: remove_vlan

no_op




PISCES vs Native OVS

OPISCES BPISCES (Optimized) BOVS
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Complexity Comparison

_ LOC Methods Method Size .
Native OVS | 14,535 106 RZAERN 40x reductioninlOC
ovs.p4 341 40 353 20x reduction in method size

| FilesChanged | Lines Changed

: OVS 28 411
Connection Label ovs.pd ) 5
P Code mastery no longer needed

OVS 18 170
funnel OAMIIE  ovs.pa

OVS 20 370
TP Hags ovs.p4




Next Steps

1. Make PISCES available as open-source (May 2016)
2. Accumulate experience, measure reduction in deployment time
3. Develop P4-to-eBPF compiler for kernel forwarding



PERC: Proactive Explicit Rate Control

Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, George Varghese, Sachin Katti, NM

Problem: Congestion control algorithms in DCs are “reactive”
* Typically takes 100 RTTs to converge to fair-share rates (e.g. TCP, RCP, DCTCP)
 The algorithm it doesn’t know the answer; it uses successive approximation

Approach: Explicitly calculate the fair-share rates in the forwarding plane

Question: Does it converge much faster? Is it practical?

[Hotnets 2015]



Reactive vs Proactive Algorithms
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Performance Results

100Gb/s
Edge Links

4 Hosts

Convergence time
m 14 RTTs 4RTTs | [preestabed
dependency chain
Tail (Q9") | 71RTTs | 10RTTs B




Next Steps

Convergence time

* Proof that convergence time equals length of dependency chain
 Reduce measured time to provable minimum

Develop practical algorithm

e Resilient to imperfect and lost update information
e (Calculated in PISA-style forwarding plane
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<The End>



